Math 335 Sample Problems

One notebook sized page of notes (one side) will be allowed on the test. No electronic devices allowed. You may work together on the sample problems – I encourage you to do that. The test will cover 4.5-4.7 and 5.2-5.8, 6.1. There may be homework problems on the test. The midterm is on Monday, February 3.

1. Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be defined by

$$f(x,t) = \begin{cases} \frac{\sin(xt)}{t} & \text{if } t \neq 0, \\ x & \text{if } t = 0. \end{cases}$$

Let

$$g(x) = \int_0^{\pi/2} f(x, t)dt.$$

Compute g'(x) and g'(0).

- 2. (a) Compute $\int_{x^2+y^2=1} \frac{-ydx + xdy}{x^2 + y^2}$.
 - (b) Using part (a) and Green's theorem, compute $\int_{\frac{x^2}{4}+\frac{y^2}{9}=1}\frac{-ydx+xdy}{x^2+y^2}.$
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuously differentiable and assume $f(\theta) > 0$. Use Green's theorem to prove that area of the region S, defined in polar coordinates by the inequalities

$$\alpha \le \theta \le \beta, r \le f(\theta),$$

is given by

$$A(S) = \frac{1}{2} \int_{\alpha}^{\beta} f^{2}(\theta) d\theta.$$

- 4. Suppose f is continuous on $[0, \infty)$ and |xf(x)| < 1 for $x \ge 1$. Prove or give a counterexample to the statement that $\int_1^\infty f(x)dx$ converges.
- 5. Let C be the curve of intersection of y + z = 0 and $x^2 + y^2 = a^2$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_C (xz+1)dx + (yz+2x)dy.$

Sample Problems 2

6. Let

$$\phi(x) = \int_0^{\pi} \cos(x \sin t) dt.$$

Prove that

$$x\phi''(x) + \phi'(x) + x\phi(x) = 0.$$

7. (a) Prove that $\int_C \frac{-ydx + xdy}{x^2 + y^2}$ is not independent of path on $\mathbf{R}^2 - \mathbf{0}$.

- (b) Prove that $\int_C \frac{xdx + ydy}{x^2 + y^2}$ is independent of path on $\mathbf{R}^2 \mathbf{0}$. Find a function f(x, y) on $\mathbf{R}^2 \mathbf{0}$ so that $\nabla f = (\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2})$.
- 8. Prove that $\int_0^\infty \cos x^2 dx$ converges, but not absolutely.
- 9. Decide if the following integrals converge conditionally, converge absolutely, or diverge.

(a)

$$\int_{-\infty}^{+\infty} x^2 e^{-|x|} dx$$

(b)

$$\int_0^\pi \frac{dx}{(\cos x)^{\frac{2}{3}}}$$

(c)

$$\int_{1}^{\infty} \frac{\sin(1/x)}{x} dx$$

- 10. Let f and g be integrable on [a, b] for every b > a.
 - (a) Prove that

$$(\int_{a}^{b} |fg|)^{2} \le \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}.$$

You must give a proof of this. It is not proved in the text.

- (b) Prove that if $\int_a^\infty f^2$ and $\int_a^\infty g^2$ converge then $\int_a^\infty fg$ converges absolutely.
- 11. Let $a_n = \log(\frac{n}{n+1})$. Does $a_n \to 0$? Does the series $\sum_{n=1}^{\infty} a_n$ converge? If so, find its limit.
- 12. Let S be the surface (torus) obtained by rotating the circle $(x-2)^2+z^2=1$ around the z-axis. Compute the integral $\int_S \mathbf{F} \cdot \mathbf{n} dA$, where $\mathbf{F} = (x+\sin(yz),y+e^{x+z},z-x^2\cos y)$.

Sample Problems 3

13. Let
$$w(x)$$
 satisfy $w''(x) + w(x) = 0$, $w(0) = 0$, $w'(0) = 1$. Let $f(x) = \int_0^x (w(x-y))h(y)dy$. Prove that
$$f''(x) + f(x) = h(x), f(0) = 0, f'(0) = 0.$$

- 14. We have covered the following:
 - (a) Green's theorem
 - (b) Surface area
 - (c) Divergence theorem
 - (d) Stokes' theorem
 - (e) Integrating vector derivatives
 - (f) Integrals dependent on a parameter
 - (g) Improper single and multiple integrals
 - (h) Introduction to infinite series.
- 15. There may be homework problems or example problems from the text on the midterm.